Project Portfolio

00005

Mechanical Engineering + Machine Learning/Al Duke University '24

ALANNA MANFREDINI

Slide Summary

A Few of My Projects

- 3-7 Pixar Robot
- 8-12 Modular Assembling Robot
- 13-15 Pinball Machine
- 16-18 Machine Learning

Some Work Experience

- 19 Tiller Design
- 20-23 Aptera Motors
- 24-32 Tesla Motors

Pixar Robot

Robot Summary

- Hopping
- One legged
- Linkage actuated
- RaspPi + LX16A powered
- Spring balanced
- Fully detailed CAD

Feasibility Analysis

Considerations:

Force for jump

4.43N @ max dist < max **motor torque**

Speed for jump

Restoring force

Motor current

Launch speed for 4cm jump < max **motor speed**

Counterweight can effectively restore base moment

Battery can provide power for **an hour** @ max torque

Design Calculations Analysis

To guide my design choices, I used first principles calculations:

- Inverse kinematics for linkage
- Curve fitting for empirical force analysis
- Current, voltage and power calculations
- Bending, torsion and buckling
- Motor protection with FFT sin waves
- PLA glass transition temperature comparisons

Features

- Calibration programs
- Motor protection abort lines
- Vibration prevention screws for electrical mounts
- Countersunk holes
- Assembly access holes
- Low print time
- LED lights

Modular Assembling Robot

Purpose

- Fabricate multiple robotic modules
- Individual modules can connect without human intervention
- Multiple connected modules can move as one unit
- Robotic modules can be located with computer vision
- 5 axis motion

Analysis

- Electrical component circuitry analysis
- FEA
- Axial, torsion, bending, buckling calculations
- Deflection calculations
- Life cycle

Testing

- Force resistance
- Electrical
- Fatigue
- Central bar
- Localisation

Product

- Engineering drawings for each part with GD&T
- BOM
- Costing
- Fabrication instructions

Pinball Machine

Fabrication Techniques

- CNC
- Laser-cutting
- 3D printing
- Moulding
- Water jet cutting
- Metal bending

Technical Work

- State machine design
- Electrical harnessing
- Power calculations
- Solenoid force calculations
- Force transmission mechanisms

Machine Learning Projects

https://manfredini.design/machine-learning.html

Object Classification By Touch

- Used reinforcement learning to train a robot to interact with an object
- Collected location data about interactions
- Classified the object based solely off touch data

https://manfredini.design/machine-learning.html

Adversarial Audio Patches

- Tricked a model into misclassifying audio by using a Neural Network to create a patch on an audio file
- Determined patch shapes and locations that were most effective at being undetectable to the human ear
- Trained a model to be robust against adversarial attacks

Tiller Design Projects

BioScout Space Efficient Package

Compact Chamberlain solution

ECG + Drug Delivery Arm

Paslode Nail Gun Attachment

KordTech Buttons

Aptera Motors

Individual Machine Design

- Designed robotic end effector heads for high volume soldering
- Designed vacuum heads for a cleanroom environment
- Managed vendors to design pick and place machines

Production Line Layout

Solar Panel Ownership (FAT)

Tesla Motors

Automated Storage and Retrieval (ASRS) Project

Autogenerating CAD

Entrance and exit buffer design

Cleanroom design

Material testing

Install plan

Autogenerating CAD

	Design Table	VBA - Human	VBA - Efficient	Python STL	.txt - Racking	.txt - Assy
No Errors	Х	\checkmark	\checkmark	\checkmark	Х	\checkmark
Space Representative	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fast	\checkmark	Х	Х	$\sqrt{}$	\checkmark	\checkmark
Good UI	Х	\checkmark	\checkmark	\checkmark	Х	$\sqrt{}$
Detailed	Х	Х	Х	Х	\checkmark	\checkmark
Editable	\checkmark	\checkmark	\checkmark	Х	\checkmark	\checkmark

- 1. Change Excel File
- 2. Close Excel
- 3. Press Run on Python
 - 1. Python gets values from Excel and generates .txt
- 4. Press rebuild in SW file

No Conveyance Configuration

Offload Conveyance FAT Table

Offload Conveyance

FAT Table FEA

Loading (10000N)	Deflection (mm)
On Table	0.06
On Guides	22
Front of Guides	27

Sturdy and Cheap Side guides can be used elsewhere on crane

Cleanroom Designing

Covers

Crane Pulley Cover

Dispersal To Vendors:

- Gave designs
- Design direction
- Checked progress

Cleanroom Designing Racking Cleaner

Material Test

Material Selection

Tuff - n - Lastic	Non-Slip Liner	Safety Walk
$\mu = 0.6$ (Delrin)	μ~0.32 (Delrin)	$\mu > 0.6$
Vendor Recommended	Vendor Recommended	Used in Cell
Commercial Grade	Non adhesive	Heavy Duty
Rubber	Vinyl	Mineral
Salt Resistant	Slip resistant top and bottom	
Scratch Resistant		
Water Resistant		

Alanna Manfredini

https://www.linkedin.com/in/alanna-manfredini-924009235/

www.manfredini.design

alanna.p.manfredini@gmail.com