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Triangulated Surfaces and Symmetry

A triangulated surface S = (V ,F ) consists of a set V of vertices
and a set F of faces, each of which is a set of 3 vertices.

A symmetry of a triangulated surface S = (V ,F ) is a
face-preserving bijective map from V to itself. Symmetries of S
form a group—the automorphism group of S , denoted Aut(S).
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Rolling Triangulated Surfaces

Given two surfaces S and S ′, we can place S ′ on S in many
different configurations.

We focused on rolling surfaces S ′ that are maximally
symmetric—i.e. surfaces where every configuration of S ′ on a fixed
face f of S corresponds to a symmetry of S ′.
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Loops and the Holonomy Group

When rolling S ′ along S , we usually roll S ′ in loops on S—paths
along the faces of S that end where they begin.

The loops on S based at some fixed face form a group under
concatenation (with some technical details), denoted Lf (S).

Rolling S ′ along a loop on S induces an automorphism of S ′, so we
actually have a group homomorphism φf : Lf (S)→ Aut(S ′).

The holonomy group Holf (S ′,S) of S ′ over S based at face f is
the image of φf .
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Lassos

Lassos are a special type of loop.
The holonomy induced on S ′ by
rolling along a lasso depends only
(up to conjugation) on the vertex
it loops around.

Aram Lindroth, Nathan Nguyen, Alanna Manfredini Holonomy of Combinatorial Surfaces



Introduction
Structure of the Holonomy Group

Holonomy of Tori
Restricting the holonomy to subgroup of Z/3Z

Contractible Loops & Restricted Holonomy

The subgroup C (S) E L(S) generated by lassos is the contractible
loop group based at f .

The restricted holonomy group Hol0(S ′,S) is the subgroup of the
holonomy group containing the symmetries of S ′ that can be
induced by rolling along a contractible loop
(Hol0(S ′, S) = φ(C (S))).
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Structure of the Holonomy Group

Loop Group L(S)

Symmetry Group Aut(S')

Holonomy Group
Hol(S',S)

Loops
C(S)

Hol0(S',S)

Symmetries
of S'

Some of the mappings of loops to
symmetries given by ϕ
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Structure of the Holonomy Group

C(S)

Loop Group L(S)

Symmetry Group Aut(S')

Holonomy Group
Hol(S',S)

Loops
Copies (cosets) of C(S)

Hol0(S',S) Coset of Hol0(S',S)

Symmetries
of S'

Mappings given by homomorphism from
π1(S) to Q
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Computing Holonomy Groups

This gives a method to compute the holonomy group:

1 Find the restricted holonomy group.

2 For each coset of C (S) in L(S), find the coset of the
contractible holonomy group whose elements (symmetries)
those loops induce on S ′.

3 Repeat until we have enough information to determine the
holonomy group; usually, examining just 2 or 3 cosets of C (S)
is enough.
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The Tetrahedral Group
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Assembly of Torus
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Holonomies of Simple Setups

Setup (R,T,L) Holonomy Vertex Permutations

(0, 0, 0) Trivial -
(1, 0, 0) Left Z/2Z (1,3)(2,4)
(2, 0, 0) Z/2Z (1,4)(2,3)
(3, 0, 0) Right Z/2Z (1,3)(2,4)
(0, 2, 0) Z/2Z (1,4)(2,3)
(0, 0, 2) Z/2Z (1,4)(2,3)
(0, 1, 3) Z/2Z (1,2)(3,4)

Table: Holonomies of Basic Setups of Torus
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Results for Tori

Setup (R,T,L) Holonomy Combinations Permutations

(1, 1, 1) Left Z/2Z ((1, 3)(2, 4))2 (1,3)(2,4)
(1, 1, 3) Right Z/2Z ((1, 2)(3, 4))2 (1,2)(3,4)
(0, 2, 2) Trivial ((1, 4)(2, 3))2 -
(2, 2, 0) Z/2Z ((1, 4)(2, 3)2 (1,4)(2,3)
(2, 0, 2) Z/2Z ((1, 4)(2, 3))2 (1,4)(2,3)
(2, 3, 3) Z/2Z× Z/2Z (1,4)(2,3)(1,3)(2,4) V

Table: Holonomies of Combination Setups of Torus
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Tori with Special Vertices

Currently we have: Trivial, Z/2Z & V. We still need: Z/3Z
& A4.

Figure: Bordering Order 6 Vertices with Order 4 and 8
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Results for Klein Bottle

Setup (R,T,L) Holonomy Permutations

(0, 0, 0) Left Z/2Z (2,3)
(0, 0, 0) Right Z/2Z (1,4)
(1, 0, 0) Z/4Z (1,3,4,2)
(3, 0, 0) Right Z/4Z (1,2,4,3)
(0, 0, 2) Z/4Z (2,3)
(0,1,3) Z/2Z× Z/2Z V
(2, 3, 3) D4 D4

Table: Holonomies of Basic Setups of Klein Bottle
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Restricting the holonomy to subgroup of Z/3Z

Assumption: S is connected, closed, and orientable.

In this section, we explore a different method to identify two
specific holonomy groups: the trivial and Z/3Z, when we roll the
tetrahedron over the surface S .
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Intuition

What does it mean to have trivial or Z/3Z holonomy?

Figure: Having a trivial or Z/Z3 holonomy is the same as having a fixed
vertex
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Intuition

So we want to find whether there is a structure of our surface that
can indicate whether a vertex of the surface can ”fix” the
tetrahedron’s vertex?

To do that, given a vertex x of the tetrahedron, we want to look at
which vertices of the surface can x touch.
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Observation

Given a face of the surface, we can see that there are 3 other faces
that are adjacent to this face, and if x stands on any of the red
vertices, it’s possible for x to reach the other two.

Figure: A vertex x touching any red vertex can reach the other two by
sufficient rollings
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By this, we can define an equivalence relation saying that two
vertices are equivalence if and only if we can go from one to other
through a finite sequence of neighborhoods.
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Isolated vertex

Definition

A vertex is isolated if it’s not equivalent to any of its neighbors.

Figure: Isolated vertex is not equivalent to all of its neighbors
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Theorem of restricting the holonomy group

Theorem

For S orientable, the holonomy group is a subgroup of Z/3Z if and
only if S has an isolated vertex.
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Trivial and Z/3Z criteria

Theorem

For S orientable, S has trivial holonomy iff it has all vertices
isolated, and it has Z/3Z holonomy iff it has both isolated and
non-isolated vertices.
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Application: subdivision

Figure: 4−subdivision

Figure: 2−subdivision
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Even subdivision holonomy

Theorem

2−subdivision has
holonomy trivial or
Z/3Z.
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Z/3Z holonomy construction using subdivision

Theorem

If the original surface has a vertex with degree not divisible by 3,
then 2-subdivision of it has holonomy Z/3Z.
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Conclusion

We developed tools to find holonomy group by first using the
concept of contractible holonomy group and combinatorial
fundamental group.

We then applied this method to compute holonomy group of
tori, specifically for the tetrahedron case, and gave examples
of surfaces with full symmetry group, Klein-four group, and
Z/2Z holonomies.

We then give a method to check whether we have the trivial
or Z/3Z holonomy, and then construct an example of Z/3Z
holonomy using subdivision, verified by this method.
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Future work

Apply or generalize our methods to more complicated surfaces

Examine other complex problems.

Develop efficient programs to simulate and solve these
problems.
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Thank you for listening!
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